Refrigeration / Freezers & Coolers

The Professor: Restricted TXV Metering Device

January 17, 2011
KEYWORDS maintenance / service / TXV
/ Print / Reprints /
/ Text Size+
A system with a restricted metering device has the very same symptoms as a system with a liquid line restriction that occurred after the receiver. This is because the TXV is actually part of the liquid line.

This article explores how a restricted metering device will affect system performance and efficiency. The system is a commercial refrigeration system with a TXV as the metering device. The refrigerant being used is HFC-134a.

Very similar results will occur if an automatic expansion valve (AXV) is used. However, because different refrigerant system configurations may apply when using capillary tubes as metering devices, different system symptoms may occur. The intent of this article is to explore how a partially restricted TXV will affect system performance and efficiency and what symptoms will occur.

Listed below are ways the metering device (TXV) can become restricted:

• Plugged inlet screen;

• Foreign material in orifice;

• Oil logged from refrigerant flooding the compressor;

• Adjusted too far closed;

• Wax buildup in valve from wrong oil in system;

• Sludge from the byproducts of a compressor burnout;

• Partial TXV orifice freeze-up from excessive moisture in the system; and

• Manufacturer’s defect in the valve.

A system with a restricted metering device has the very same symptoms as a system with a liquid line restriction that occurred after the receiver. This is because the TXV is actually part of the liquid line. A TXV being restricted will cause the evaporator, compressor, and condenser to be starved of refrigerant. This will cause low suction pressures, high superheats, low amp draws, and low head pressures.

Also, the symptoms of a restricted TXV system are very similar to a system with a refrigerant undercharge. However, the undercharged system will have low condenser subcooling levels. Service technicians often confuse an undercharged system with a restricted metering device.

Adding refrigerant to a system with a restricted metering device will only raise the condenser subcooling amounts to a level where the head pressure may elevate. This is caused from a lack of internal volume in the condenser to hold the added refrigerant. Even the receiver may overfill if too much refrigerant is added.

Table 1 shows a system checklist for a system with a restricted metering device.

Symptoms can include:

• Somewhat high discharge temperature;

• Low condensing (head) pressure;

• Low condenser split;

• Normal to a bit high condenser subcooling;

• Low evaporator (suction) pressure;

• High superheats;

• Low amp draw; and

• Short cycle on low-pressure control (LPC).

Table 1. This is a system checklist for a system with a restricted metering device.


High discharge temperature: Somewhat high discharge temperatures are caused by the higher superheats from the evaporator being starved of refrigerant. The compressor is now seeing a lot of sensible heat coming from the evaporator and suction line, along with its heat of compression and motor heat. The compressor will probably overheat from the lack of refrigerant cooling if it is a refrigerant-cooled compressor.

Low condensing (head) pressures: Since the evaporator and compressor are being starved of refrigerant, so will the condenser because these components are in series with one another. There will be little heat to eject to the ambient surrounding the condenser. This allows the condenser to operate at a lower temperature and pressure.

Low condenser splits: Since the condenser is being starved of refrigerant, it can operate at a lower temperature and pressure. This is because it does not need a large temperature difference between the ambient and the condensing temperature to reject the small amount of heat it is getting from the evaporator, suction line, and compressor. This temperature difference is referred to as the condenser split. If there were large amounts of heat to reject in the condenser, the condenser would accumulate heat until the condenser split was high enough to reject this large amount of heat. High heat loads on the condenser mean large condenser splits. Low heat loads on the condenser mean low condenser splits.

Normal to a bit high condenser subcooling: Most of the refrigerant will be in the receiver, with some in the condenser. The condenser subcooling will be normal to a bit high because of this. The refrigerant flow rate will be low through the system from the restriction. This will cause what refrigerant that is in the condenser to remain there longer and subcool more. Note that an undercharge of refrigerant will cause low subcooling.

Low evaporator pressures: Since the evaporator is starved of refrigerant, the compressor will be starving also and will pull itself into a low-pressure situation. It is the amount and rate of refrigerant vaporizing in the evaporator that keeps the pressure up. A small amount of refrigerant vaporizing will cause a lower pressure.

High superheats: High superheats are caused again from the evaporator and compressor being starved of refrigerant. With the TXV restricted, the evaporator will become inactive and run high superheat. This will cause the compressor superheat to be high. The 100 percent saturated vapor point in the evaporator will climb up the evaporator coil causing high superheats.

Low amp draw: High compressor superheats and low suction pressures will cause low density vapors to enter the compressor. Also, the compressor will be partly starved from the TXV being restricted. These factors will put a very light load on the compressor causing the amp draw to be low.

Short cycle on the low-pressure control (LPC): The compressor may short cycle on the LPC depending on how severe the restriction in the TXV is. The low suction pressures may cycle the compressor off prematurely. After a short period of time, the evaporator pressure will slowly rise from the small amounts of refrigerant in it and the heat load on it. This will cycle the compressor back on. This short cycling may keep occurring until the compressor overheats. Short cycling is hard on controls, capacitors, and motor windings.

Publication date: 01/17/2011

Did you enjoy this article? Click here to subscribe to The NEWS Magazine

Recent Articles by John Tomczyk

You must login or register in order to post a comment.



Image Galleries

2014 MCAA Annual Convention

Scenes from the 2014 MCAA Annual Convention in Scottsdale, Ariz.


NEWSmakers: Julian Scadden

Training is an ongoing process. Julian will discuss how you can generate maximum return on time and energy invested training by following a three part process. Listen to this podcast to get expert tips on training, tracking and follow up. 

More Podcasts


NEWS 04-21-14 cover

2014 April 21

Check out the weekly edition of The NEWS today!

Table Of Contents Subscribe


Which statement on service calls best applies to your business?
View Results Poll Archive


2014 National Plumbing & HVAC Estimator

Every plumbing and HVAC estimator can use the cost estimates in this practical manual!

More Products

Clear Seas Research


Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications, Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.


Magazine image
Register today for complete access to Get full access to the latest features, Extra Edition, and more.


facebook icontwitter iconyoutube iconLinkedIn i con