Examining Recovery Cylinder Capabilities

December 3, 2007
/ Print / Reprints /
ShareMore
/ Text Size+

Working with refrigerant recovery cylinders is a basic part of servicing refrigeration systems. Technicians need to work safely when handling these cylinders.

Overfilling these cylinders can create a potential hazard. To prevent overfilling, recovery cylinders should not be filled to more than 80 percent of their internal volume. Most technicians accomplish this by placing the recovery cylinders on an electronic scale and monitoring the weight of the cylinder during the recovery process. When the cylinder reaches a weight equal to 80 percent of its total capacity, the technician stops the recovery process and changes cylinders if needed.

In order to use this method effectively, a technician must know the cylinder’s weight equal to 80 percent of its maximum capacity. This maximum weight will vary slightly as different refrigerants are used in recovery cylinders and different refrigerants have different liquid densities.



MAXIMUM WEIGHT

There are two basic ways to accurately determine the maximum weight of a recovery cylinder:

1. Find the recovery cylinder manufacturer’s published data for various refrigerants.

2. Calculate this value.

To determine this value, use the following procedure:

1. Calculate the internal volume of the recovery cylinder being used. This can be accomplished by dividing the water capacity of the cylinder by the density of water, which is 62.5 pounds/cubic foot. The water capacity of a recovery cylinder normally is stamped on the outside of the cylinder. For example, if a recovery cylinder has a water capacity of 47.17 pounds, then its internal volume will be 0.75 cubic feet (47.17 pounds ÷ 62.5 pounds/cubic foot = 0.75 cubic feet).

2.
For the refrigerant to be recovered, determine its liquid density at a saturation temperature of 130°F. Refrigerant manufacturers publish the various saturation properties of their refrigerants, including liquid density at various saturation temperatures. For example, if R-134a were to be recovered, its liquid density at a 130° saturation temperature is 67.46 pounds/cubic foot.

3.
Determine the tare weight of the recovery cylinder, which is the weight of the cylinder if it were empty. This is also stamped on the outside of the cylinder. For example, for a nominal 50-pound recovery cylinder, the tare weight would be 24 pounds.

4.
Use the following formula to determine the maximum cylinder weight:

Maximum cylinder weight = (cylinder volume x liquid density of the refrigerant at 130°F x 0.80) + tare weight

For example, if the cylinder is holding R-134a, (with its liquid density of 67.46 pounds/cubic foot at 130° saturation temperature) had a water capacity of 47.17 pounds and a tare weight of 24 pounds, the maximum cylinder weight would be:

Cylinder volume = water capacity ÷ density of water (62.5 pounds/cubic foot)

Cylinder volume = 47.17 pounds ÷ 62.5 pounds/cubic foot = 0.75cubic feet

Maximum cylinder weight = (0.75 cubic feet x 67. pounds/cubic foot x 0.80) + 24 pounds = 64.48 pounds.

A technician should not continue to fill this recovery cylinder once its weight has exceeded 64.48 pounds. Again, overfilling a recovering cylinder can lead to very serious injury.

Publication Date: 12/03/2007

Did you enjoy this article? Click here to subscribe to The NEWS Magazine

Recent Articles by Joe Marchese

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

2014 MCAA Annual Convention

Scenes from the 2014 MCAA Annual Convention in Scottsdale, Ariz.

Podcasts

NEWSmakers: Julian Scadden

Training is an ongoing process. Julian will discuss how you can generate maximum return on time and energy invested training by following a three part process. Listen to this podcast to get expert tips on training, tracking and follow up. 

More Podcasts

THE MAGAZINE

ACHRNEWS

NEWS 04-21-14 cover

2014 April 21

Check out the weekly edition of The NEWS today!

Table Of Contents Subscribe

SERVICE CALLS POLL

Which statement on service calls best applies to your business?
View Results Poll Archive

HVACR INDUSTRY STORE

plumbing-hvac.gif
2014 National Plumbing & HVAC Estimator

Every plumbing and HVAC estimator can use the cost estimates in this practical manual!

More Products

Clear Seas Research

 

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications, Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

DON'T MISS A THING

Magazine image
 
Register today for complete access to ACHRNews.com. Get full access to the latest features, Extra Edition, and more.

STAY CONNECTED

facebook icontwitter iconyoutube iconLinkedIn i con