Service & Maintenance / Extra Edition

Beating the Heat

September 10, 2007
/ Print / Reprints /
ShareMore
/ Text Size+
Here is an example of a PSC design that is more efficient than a previous design, and uses about 14 percent few amps. If the two motors were compared just based on amps, it might be incorrectly concluded that the previous design was a stronger motor, which is not the case.

In a perfect world, each electric motor would be 100 percent efficient. In other words, 100 percent of the power input into the motor (watts) would be converted into work (horsepower).

Alas, the world we live in is far from perfect, and that imperfection extends to the motor as well. Advances in technology have brought today’s motor closer to the ideal of 100 percent efficiency, but the best the manufacturers have been able to produce so far reaches the low 90s. As a result, whenever you energize a motor, you will get two outputs: a desirable one (work) and one that is not so desirable (heat). That can be a real issue in many cases. For example, many motors used in single-phase applications (such as shaded pole motors), barely rise above the 50 percent mark in efficiency. So you know these types of motors will use almost as many input watts to produce heat as produce work.

Equipped with this knowledge, you can understand why one of the criteria you must consider when selecting a motor for an application is the effect of operating temperatures on that motor.

A number of universal factors come into play when you deal with operating temperatures, no matter what the application. These include:

• The electrical efficiency of the motor in question;

• The ambient temperature for which the motor is rated;

• The ambient temperature in which it will operate;

• The temperature rise the motor will undergo when it is working as well as its nameplate-rated temperature rise;

• The class of electrical insulation with which the motor is made; and

• The motor’s service factor.

One of the most fundamental design criteria relating to motor lifespan is the selection of materials used to insulate the electrical parts of the motor and the capacity of those materials to withstand heat. Insulation is critical to the safe and consistent operation of the motor. If the insulation system fails, the electrical parts become short circuited which causes the winding to break down. The result is motor failure.

To help you identify which system is right for a given application, insulating materials are grouped into classes designated with letters that identify the maximum temperature capability of the materials in that class. These identifying letters are virtually universal among motor manufacturers because they are specified by the trade organization, the National Electrical Manufacturers Association (NEMA). For example, Class A insulation materials are designed to withstand a maximum temperature of 95°C (approximately 205°F) in most motor applications. Class B insulating materials must be capable of withstanding maximum temperatures of 110°C (or about 230°F). These are the two most common classes of insulation for general-purpose motors. Other classes (for example, Class F, Class H) exist for unusual, high-temperature applications.

Consider a motor that is operating normally. The temperature of its insulation will be the sum of two components. The first is the ambient temperature (in other words, the temperature of the environment surrounding the motor when it is at rest). If that motor is operating in a room, the ambient temperature would be room temperature. The second component is the temperature rise that motor experiences when it converts some of its input power to heat rather than work.

It is common practice for a manufacturer to rate the maximum ambient temperature in which a motor is designed to operate. Thanks to our friend NEMA, this maximum ambient temperature is commonly specified at 40°C (or 80°F) unless the motor is designed for a specific duty.

Using this bit of information, you can now begin to figure out the limits of temperature rise on a motor. Take, for example, a motor with a Class B insulation system. You know that its maximum rated temperature is 110°C, and you know its maximum ambient temperature is 40°C. This tells us the temperature rise is limited to 70°C if it is operating at its maximum ambient temperature.

You can use this knowledge in a number of ways when installing or replacing motors. For example, if the motor in question is capable of reaching its nameplate horsepower without its temperature rise reaching the maximum for its insulation class, you can think of that motor as having “spare” temperature capacity. That excess capacity can be translated into the capability of delivering more horsepower than the nameplate specifies without exceeding the maximum insulation temperature.

This spare horsepower is sometimes expressed as service factor. The service factor number found on the nameplate (for example, 1.25) can be used to multiply the motor’s nameplate horsepower to give you a maximum horsepower that exceeds the nameplate rating without exceeding the temperature capability of the motor.

But what if the motor must operate in an environment that is warmer than its rated ambient temperature? In that case, the temperature rise must be reduced if the motor is to stay within the temperature capacity of the insulation. In these cases, you may use a motor in an environment that is warmer than its rated ambient temperature provided you reduce the load horsepower.

It’s also important to realize that the operating conditions of the motor may also affect ambient temperature. If the motor is enclosed (in a furnace, for example, or within a protective housing such as a pump housing), the ambient temperature that motor experiences is actually the temperature of the air immediately surrounding the enclosure. This suggests you will have to consider dissipating the temperature within the enclosure by passive or positive ventilation. If you are comparing an enclosed motor with a similarly rated open and ventilated motor, you will need to consider the difficulty involved in dissipating the heat involved in the operation of the enclosed motor.

Temperature considerations rank right up there with mechanical parts failures in shortening the life expectancy of a motor. Understanding all of the factors involved in temperature can help you make intelligent choices when installing or replacing motors in the field.

Publication date: 09/10/2007

Did you enjoy this article? Click here to subscribe to The NEWS Magazine

Recent Articles by Neil Simon

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

2014 MCAA Annual Convention

Scenes from the 2014 MCAA Annual Convention in Scottsdale, Ariz.

Podcasts

NEWSmakers: Julian Scadden

Training is an ongoing process. Julian will discuss how you can generate maximum return on time and energy invested training by following a three part process. Listen to this podcast to get expert tips on training, tracking and follow up. 

More Podcasts

ACHRNEWS

NEWS 04-21-14 cover

2014 April 21

Check out the weekly edition of The NEWS today!

Table Of Contents Subscribe

SERVICE CALLS POLL

Which statement on service calls best applies to your business?
View Results Poll Archive

HVACR INDUSTRY STORE

plumbing-hvac.gif
2014 National Plumbing & HVAC Estimator

Every plumbing and HVAC estimator can use the cost estimates in this practical manual!

More Products

Clear Seas Research

 

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications, Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

DON'T MISS A THING

Magazine image
 
Register today for complete access to ACHRNews.com. Get full access to the latest features, Extra Edition, and more.

STAY CONNECTED

facebook icontwitter iconyoutube iconLinkedIn i con